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The inversion of the fundamental relationships of the theory of plastic flow of 
hardening bodies is obtained in the neighborhood of a regular point of an arbit- 
rary loading surface. The stress increments are consequently expressed explicitly 
in terms of the strain increments. 

The fundamental relationships of the theory of a plastic hardening body [l, 21 
under the assumption of the existence of loading functions are in the form of re- 

lationships expressing the increments of strain in terms of the increments ofstress. 
Upon formulating the problems in displacements, for example in the case ofthree- 
dimensional stability problems [3, 41, the increments in stress must be expressed 
in terms of the increments of strain, i. e. the fundamental relationships must be 
inverted. Such an inversion is realized below in the neighborhood of a regular 
point of an arbitrary loading surface for an isothermal strain process in the case 
of small strains. 

1, Following [l, 21, let us write the fundamental relationships of the theory of a plas- 
tic hardening body in the neighborhood of a regular point of the loading surface. We re- 
present the total strain increment as the sum of increments in the elastic and plastic 
strains (we introduce the compliance tensor C for the elastic strain, and we proceed 
from the associated flow law for plastic deformation) 

ck,, = denme + (JE.,,,,P (1.1) 

cl&,, = Cnmij d& (1.2) 

de:,,, = dh-&, when f=O, df=O and d'f>O (1.3) 

de;,,, = 0, when f =O and df 3 d’f < 0 or f < 0 

where f denotes the loading function ; the equation of the loading surface is hence 

f (8, gij, %jP, X8, k,) = 0 (1.4) 
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Here gij ace the covaciant components of the metric tensor of a Lagrange coordinate 
system in the undeformed state, ail ace the contcavaciant components of the stress ten- 

.P soc, E&J ace the covaciant components of the plastic strain tensor, XS are the hacden~g 

parameters which can be related to the residual strains by nonholonomic constraints, and 
k8 are constants of the material. 

The differential dependences for the hardening parameters can be represented for a 

loading in one of the forms 

dxS = .4:&g, Ati = A: (anm, E:m) 
(1.5) 

~2%~ = B, d’f GG B, 5 d&, B, = B, (a”“, E,P,) (1.61 

The expressions (I.. 1) - (1.6) ace fundamental in the theory of plastic hardening hoc 

dies. 

2, The fundamental relationship can also be cepcesented in a somewhat diffecent 

form. To this end, we proceed as follows, From (1.3), (1.4) and (1.6) we determine the 
factor dh and substitute it into (1.3). We consequently obtain from (1.1) - (1.3) 

dE,, = (Cnmij + Knrnii) doi? when f = 0, dj =L 0 and di’f > 0 (2.1) 

a&,, = Cnmijdaij, when f = 0 and df EE d’f GO oc f < 0 

(2.2) 

(2.3) 

Let us introduce the tensor K, whose covaciant components ace determined from (2.2) 

in the case of (1.5), and from (2.3) in the case of (1.6), into (2.1). As a result of the 
inversion, (2.1) can be represented as 

doij =I E;jnm& nrnr when f = 0, df z 0 and d’f > 0 (2.4) 
doij = Eiimnda II*, when f = 0 and dfrd’f<O or f<O 

E~nm(C~~~j + K~~~j~ = gikgjq (2.5) 

Eflq"m&,,ii = gikgjQ (2.6) 

tit us note that the tensor E, whose contravariant components ace evaluated as a re- 

sult of solving the system (2.6), is an elastic modulus tensor (of a linear anisotropic elas- 
tic body), whose representation for different classes of anisotcopy is presented in known 
courses of the theory of elasticity. Hence,t.he question of the inversion of the celation- 
ships (2.1) for the known tensor E reduces to determining the contcavaciant components 
of the tensor EP as a result of solving the system of equations (2.5) under conditions 

(2.6). 
The tensors E, C, K and E, have the following properties: 

Ekqnm = Eqknm = &mm” = rmkq, Cnmij = Crnnij = Cnmji L= Cijnm (2.7) 

K nmij = K . . ‘5 

mnz1 K nmji = R.. zlnmt 
,xj@nm 

P 
Eqknm = EFmn,, En,mkP 

= P 



3. Let us turn to the evaluation of components of the tensor EP. We note thatthere 
follows from (2.2) and (2.3) that the components of the tensor K can be defined as 

Kn*ij = - M,~iVl<j (3.1) 

(3*2) 

(3.3) 

(the components of the tensor M in (2.2) have the form (3.2). and in (2.3) have the 

form (3.3)) _ 
Introducing the notation (3. l), we obtain a system of equations (2.6) from (2.5) to 

determine the contravariant componenfs of the tensor Ep . We seek the solution of this 
same system as Ek@%‘nm 

P 
ZZ EkQnm + ~~~~~~~~~~~~~~~~~~~~~~~~~ (3.4) 

where z is an unknown scalar function, Substituting (3.4) into (2.5) and taking (3. l), 

(2,6) and the properties (2. ‘7) of the tensors E and C here, we obtain 

~~q*m~~m~~~ [I - z (I - Ef'~'fJ4Mt,f.Mttti)] = 0 

after a number of manipulations. 

It hence follows that 
z=(l-E f'f'fSf4MtJ,Mf,$-l (3.5) 

We note that the solution (3,4), (3.5) is meaningless for those strain processes for which 
the conditions of disappearance of the expression in the parentheses in (3.5) are satisfied. 
Taking (3.1) into account, these conditions can be given the following form: 

E~~nmK~m~~ = --1 (3.6) 

We analyze the case when conditions (3.6) can be satisfied, It follows from (2.1) - (2.3) 
that the tensor K characterizes the increment in the plastic strains of a hardening body, 
and it follows from the conditions (3.6) that the components of the tensor K must be 
expressed only in terms of the tensor E which characterizes the increments in the elas- 

tic strains. Therefore, a solution in the form of (3.4) (3.5) is meaningless only when 
the components of the tensor K characterizing the increments in the plastic strains in 
a hardening body are expressed only in terms of component of the elastic modulus ten- 
sor E of the same body independently of the nature of the simplification and equiva- 

lently, of the magnitude of the stresses and plastic strains. 
This case apparently holds only for individual strain processes which are not charac- 

teristic for hardening bodies. Thus, we obtain from a comparison between (2.6) and(3.6) 
that the conditions (3.6) will be satisfied when 

K nmkq = - c nmkq (3*7) 
It follows from (1. l), (1.2) and (3.1) and the first expression in (2.1) that under the 

active loading the increments in the plastic strains are equal in magnitude to the corre- 
sponding increments in the elastic strains and oppposite in sign ; the increments in the 
total strains hence equal zero. Such a strain process is apparently meaningless. 

Co~equently, in the general case conditions (3.6) are not satisfied for plastic harden- 
ing bodies,but the components of the tensor &, in (2.4) can be represented,according 



664 A. N. GW 

to (3.4) and (3.5), as follows: 

i3mn E, = Eijnm _ ~i~t’tZ~t~t~~nmt~f~~t,t, (EasrS &&&fYs _ 1)-l (3.8) 

Therefore, when the loading function is given in the form (1.4)) then the fundamental 
relationships of the theory of plastic flow of hardening bodies can be represented in one 

of the following two forms in the neighborhood of a regular point of the loading surface. 
The first form is like (2. 1) taking (3. 1) into account ; in a somewhat different notation 
this form has been examined in [l, 21, etc. The second form, which is an inversion of the 
first, can be represented according to (2.4) and (3.8), as follows: 

d.& = (Eiinm _ @““) dEnm, when f = 0, df = 0 and d’f>O (3.9) 

d$j = Eijnm denm, when f= 0 and-df=d’f<O or f<O 

The tensor E,, whose contravariant components are determined from the expressions 

ijnm 
E* = ~ijt~t~~t~t~~nmt’t’Mt~t, (EGLPYs M,&& - 1)-l (3.10) 

has been introduced into (3.9). The components of the tensor M in (2.1) and (3. l), as 
well as in (3.9) and (3. lo), are determined from the expressions (3.2) if the differential 
dependences for the hardening parameters have the form (1.5), and from (3.3) if these 

dependences have the form (1. 6). 
The expressions (3.9) and (3. 10) have been obtained for an anisotropic body with 

arbitrary hardening and contain a number of particular cases, some of which we examine 

below. 

4. I,et us initially consider an isotropic body with arbitrary hardening. In this case 

the following expressions hold : 

Eijnm = hgijgnm + p Qnp + ghgin) 
(4.1) 

Cnmij = & (g*igmj - -I$& gnmgij) (4.2) 

Substituting (4.1) into (3. lo), we obtain after a number of manipulations (A iM are alge - 
braic invariants of the tensor _lf) 

E. 
ijnm = [h2gijgnm (~32 + ZAP cgijjpm + gnml@) A,M + (4.3) 

4pzMijMn”] [ 2pA: + a (A:)2 - 11-l 

A,M = gaPMa,, A,M = MapMaP (4.4) 

Therefore, in the case of an initially isotropic body with arbitrary hardening, the first 

form of the fundamental relationships has the form (2.1) taking (4.2) and (3.1) into ac- 
count, while the second form has the form (3.9) with (4. 1) and (4.3) taken into account. 
Further simplifications (particular cases) can be obtained if the kind of stress function is 
made specific. 

As an illustration, let us examine the loading function corresponding to the Mises play- 
ticity condition. We represent it as follows: 

f=‘4;“-q(x) (4.5) 

A ” is the second algebraic invariant of the stress tensor deviator, a ,‘a@ are components 

of the stress tensor deviator, X is the hardening parameter. In conformity with (4.4), we 



can write the second algebraic invariant in terms of the components of the stress tensor 
deviator A; = a’%&-,. 

Following [l, 2, 51, we take the work of the plastic strains as the hardening parameter, 
then ax = o’fde& 

Comparing this with the expression (1. 5), we obtain .4’i - 8. 
After transformations, we obtain the following expression from (4.5) and (3. 2) : 

Mnm = _ + A; z) -I’* 6;,m 

In this case we find K,,ii from (3.1) and (3.2), and Efinn’ from (4.3), (4.4) and (4.6): 

(4.6) 

(4.7) 

Therefore, the fundamental relationships in the first form have the form (2.1) for an 
initial isotropic body with a loading function in the form (4.5), where the notation (4.2) 
and (4.6) has been introduced, and have the form (3. 9) in the second form, where the 

notation (4.1) and (4.7) has been introduced. The fundamental relationships in the first 
form are presented in [5] in several other notations. The fundamental relationships in 
the second form for a loading function in the form (4.5) are presented here as an illus- 
tration of the inversion of (3.9) and (3.10) for an arbitrary loading function. 

In the case of a loading function in the form of (4.5), the fundamental relationships 
can be given a still different form. To this end, let us introduce the following notation : 
E’ is the tangential modulus on the uniaxial tension diagram, uU .is the stress intensity. 

Following [S], let us assume that the work of the plastic strains is determined completely 
by the stress intensity. In this case, we can obtain by analogy with [5] 

3 1 1 &n 3 . M -- 

km- 2 E-E’ 6, ’ 
CT, = -y s;j5’il 

(4. S) 

Substituting (4.12) into (4.3), we obtain after a number of transformations 

We similarly obtain the fundamental relationships for other loading functions also. 
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